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Abstract15

The impacts of extreme precipitation events (EPEs) on society are strongly influ-16

enced by their spatial footprint, yet the spatial scales of such events remain underexplored.17

Here we present the first continent-wide analysis of the spatial scales of daily EPEs in18

Australia. We estimate the characteristic spatial scale of EPEs seasonally across the Aus-19

tralian continent using daily station observations and semivariograms. A semivariogram20

is a spatial statistical function that measures how spatial autocorrelation in precipita-21

tion decays with distance. Consistent with global analyses of satellite data, EPEs gen-22

erally have larger spatial scales at higher latitudes. However, our analysis reveals com-23

plex seasonal and geographical dependencies that highlight the role of topography and24

meteorological regimes. We also analyse EPE spatial scales under different phases of the25

El Niño–Southern Oscillation (ENSO). In SON and DJF, southeastern Australia exhibits26

larger spatial scales during La Niña, although no uniform pattern is observed across the27

continent. Long-term changes were analysed using 2,070 stations with continuous op-28

eration between 1960 and 2023. Southwestern Australia shows a notable reduction in me-29

dian EPE length scale in most seasons, while eastern regions exhibit a decrease in MAM30

and an increase in SON. Together, these findings provide a new climatological reference31

for the spatial scale of EPEs in Australia. These results also highlight the need to bet-32

ter understand the physical factors controlling the spatial scale of precipitation extremes33

in current and future climates.34

1 Introduction35

The impacts of extreme precipitation events (EPEs) are strongly modulated by their36

spatial footprint (e.g. Schaller et al., 2016; Touma et al., 2018; Bevacqua et al., 2021,37

and citations therein). For example, widespread EPEs can lead to spatially extensive floods38

affecting multiple regions simultaneously, amplifying societal impacts across broader ge-39

ographic areas (Jongman et al., 2014; Berghuijs et al., 2019). In contrast, localised ex-40

tremes may cause intense but spatially confined impacts, such as flash flooding, which41

often overwhelm local infrastructure and are harder to predict due to short lead times42

and high spatial variability (e.g. Schumacher, 2017). Although many studies have focused43

on the frequency and intensity of EPEs, relatively few have explored their spatial extent44

(Hoegh-Guldberg et al., 2018; Bevacqua et al., 2021).45

The characteristics of EPEs are expected to change in a warming climate (O’Gorman,46

2015). As the atmosphere warms, it becomes moister, favouring more intense precipi-47

tation, while shifts in large-scale circulation patterns may alter both precipitation inten-48

sity and spatial patterns (O’Gorman & Schneider, 2009; Bevacqua et al., 2020). Several49

studies have examined how the spatial extent of EPEs responds to warming, but no clear50

consensus has emerged from modelling and observational approaches. In modelling stud-51

ies, Chang et al. (2016) reported a reduction in storm size under a warmer climate, whereas52

Guinard et al. (2015) and Dwyer and O’Gorman (2017) found that the precipitation struc-53

tures increase in size with warming. Observational analyses of the present-day climate54

have also yielded different findings for the relationship between rainfall spatial extent and55

atmospheric conditions: Wasko et al. (2016) observed a decrease in storm size with in-56

creasing local temperatures using hourly observations in Australia, while Lochbihler et57

al. (2017) identified a positive relationship between rain cell size and dew point temper-58

ature in the Netherlands. In contrast, a global trend analysis by Tan et al. (2021) found59

that the spatial extent of EPEs increased from 1983 to 2018 in non-monsoon regions of60

the Northern Hemisphere.61

Beyond the divergent findings across existing studies, the spatial scales of extreme62

precipitation remain underexplored. Australia is one of the many regions that still lack63

a baseline characterisation of the spatial extent of EPEs in the current climate. While64

Australian rainfall is “more variable than could be expected from similar climates else-65
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where in the world” (Nicholls et al., 1997), many existing studies of precipitation extremes66

focus on specific subregions without explicitly addressing spatial scales (e.g., Warren et67

al., 2021; White et al., 2022). Some limited analysis has been done at the hourly level68

by Wasko et al. (2016). They estimated storm sizes using hourly station data from a small69

number of stations (93 for one-hour events and 78 for three-hour events) in Australia,70

thereby restricting their spatial representativeness. On the daily scale, Saunders et al.71

(2021) used annual maxima to identify regions that are likely to be similarly affected by72

EPEs for Australia. However, annual maxima at different locations do not necessarily73

occur on the same day, which limits their utility for analysing the spatial extent of ex-74

tremes.75

To address this existing gap, this study provides a climatological assessment of EPE76

spatial extent across the Australian continent using daily rain gauge data. A well-defined77

climatology enables an assessment of the mean structure and variability of EPEs. This78

provides a foundation for investigating the physical mechanisms that govern their spa-79

tial extent. Long-term gauge measurements also allow us to evaluate how EPE spatial80

scales respond to internal climate variability and provide estimates of long-term trends.81

Although a global EPE spatial scale analysis was recently developed by Tan et al.82

(2021) using satellite observations, our analysis relies on in situ rain gauge data. While83

gauge-based estimates are subject to measurement errors and are constrained by lim-84

ited spatial coverage, they ensure greater accuracy in capturing precipitation extremes85

and provide the advantage of long observational records. Satellite-based products often86

exhibit precipitation estimation errors when compared to ground measurements. For ex-87

ample, Tansey et al. (2022) found that satellite products tend to overestimate seasonal88

total liquid precipitation; Montoya Duque et al. (2023) reported an overestimation of pre-89

cipitation intensity in the Southern Ocean; and Ponukumati et al. (2023) showed that90

satellite-based products can overestimate extreme rainfall intensity relative to daily au-91

tomatic weather station measurements in India. These errors limit the reliability of satel-92

lite products for analysing precipitation extremes. Compared to rain gauges, satellite prod-93

ucts are also suboptimal for long-term analyses of extreme events. Most satellite-based94

precipitation missions were launched after the 1980s (e.g., Simpson et al., 1996; Ashouri95

et al., 2015), and typically provide only one or two observations per day, while many rain96

gauges in Australia were deployed in the early 1900s (see Figure S1).97

To estimate spatial scales, we adopt the semivariogram approach introduced by Touma98

et al. (2018). Originating in spatial statistics, a semivariogram describes how the spa-99

tial dependence in a variable, such as precipitation, weakens as the distance between two100

locations increases. It provides an estimate of the distance over which the variable re-101

mains correlated (Cressie, 2015). This estimate serves as a quantitative indicator of the102

spatial scales of EPEs. This semivariogram approach was first used to characterise the103

spatial scales of EPEs across the United States using the Global Historical Climatology104

Network-Daily (GHCN-D) station dataset (Touma et al., 2018). It was further extended105

by Touma et al. (2019) to assess the spatial extent of tropical cyclones, and more recently106

adopted for the global satellite-based EPE spatial scale study by Tan et al. (2021).107

Building on the existing semivariogram-based work, we use all stations available108

from the Bureau of Meteorology’s (BoM) daily rain gauges (9861 in total) to derive a109

long-term climatology of the EPE spatial scales for the Australian continent. Since ENSO110

is the main driver of interannual rainfall variability in northern and eastern Australia111

(e.g. McBride & Nicholls, 1983; Risbey et al., 2009; King et al., 2020; Gillett et al., 2023;112

Tozer et al., 2023; McGregor et al., 2024; Huang et al., 2024; He et al., 2025), we fur-113

ther examine how the EPE spatial scale differs between El Niño and La Niña periods.114

Finally, we leverage the long-term record of daily rain gauge observations to assess changes115

in EPE spatial scales over time. Our findings show that the seasonal patterns, ENSO116

relationships, and long-term trends in EPE spatial scales vary across the continent but117

differ from those of mean precipitation and those of the intensity of precipitation extremes.118
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In particular, increases in spatial scale do not consistently occur during “wetter” peri-119

ods or in “wetter” regions. This suggests that different physical processes govern the in-120

tensity and spatial extent of precipitation extremes, and that these characteristics may121

respond differently to climate change.122

The remainder of this paper is structured as follows. Section 2 describes the rain123

gauge dataset, the semivariogram approach used to estimate the EPE spatial scales, ENSO124

classification, and trend analysis methodology. Section 3 presents our results on the spa-125

tial scales of EPEs, including their regional and seasonal variability, relationship with126

ENSO, and long-term trends. Sections 4 and 5 provide discussions and conclusions, re-127

spectively.128

2 Data and Methods129

2.1 Data for analysing seasonal EPEs130

We used daily rain gauge observations obtained from the weather station directory131

operated by the BoM for the period between 1940 and 2024. The BoM daily rainfall ob-132

servations are made at 0900 local time, recording the preceding 24-hour total precipi-133

tation. The earliest rain gauge record in the BoM archive started in May 1826. The num-134

ber of active BoM stations in Australia over time is shown in Figure S1.135

To estimate the climatological length scales of EPEs, we need stations that have136

continuous data availability, a sufficiently long period of record, and satisfactory data137

quality and station density. To balance these factors, we chose the period from 1940 to138

2024 for analysis. Only stations with an operation period of more than 20 years were in-139

cluded. A total of 9,861 stations met this criterion between 1940 and 2024. The loca-140

tions of these stations are shown in Figure 1a.141

The stations are grouped using the fifteen natural resource management (NRM)142

sub-clusters, which are administrative regions used for the Australian Government’s en-143

vironment and sustainable agriculture programs (CSIRO, 2015). These regions provide144

a standardized geographic framework widely used in environmental assessments across145

Australia. Considering the climate characteristics and spatial station distribution in the146

rangelands (central Australia), we divide the rangeland region into western (RW) and147

eastern (RE) clusters along the 130◦E longitude, replacing the original north and south148

rangeland clusters from the NRM classification (see CSIRO, 2015). The acronyms for149

the NRM sub-clusters are given in Table 1.150

To identify daily extremes, we define each station’s seasonal 90th percentile of rainy151

days (precipitation > 1 mm day−1) as its extreme precipitation threshold (hereafter “P90”).152

Conditioning on rainy days avoids including weak rainfall in dry regions and prevents153

clustering events in a single season. An EPE is recorded when daily precipitation meets154

or exceeds the station’s seasonal P90. We used the seasonal P90 instead of the monthly155

P90 as in Touma et al. (2018) and Tan et al. (2021) because this better reflects seasonal156

climatology and avoids including moderately heavy events from drier months in the anal-157

ysis.158

The P90 values across each season and each station are shown in Figure 2. Here-159

after, to avoid overplotting in regions with high station density, station data are aver-160

aged into 40-km grid boxes. The box size was chosen for visualization purposes, provid-161

ing a balanced representation of both dense and sparse regions. The seasonal variation162

in P90 magnitudes reflects well-known rainfall patterns across Australia, with the high-163

est values occurring in DJF and much lower values in JJA (e.g. Drosdowsky, 1993). This164

seasonality is particularly pronounced in Northern Australia, where the monsoon brings165

most rainfall between October and April. During the monsoon inactive phase (May–September),166

most JJA days in Northern Australia are dry, and rainfall amounts on wet days are low,167
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Figure 1. (a) Locations of BoM daily stations with more than 20 years of continuous records

between 1940 and 2024 coloured by their NRM regions. (b) The average number of stations used

in each 500-km radius neighbourhood for P90 semivariogram analysis. (c) Frequency distribution

of the number of stations in the 500-km radius neighbourhoods in each NRM region, as shown in

Panel (a).

resulting in a lower P90 magnitude. These variations are not evident in the global study168

by Tan et al. (2021), possibly because their satellite study examined spatially averaged169

precipitation over 0.25◦× 0.25◦ regions rather than gauge measurements.170

2.2 Estimating the spatial scales of EPEs171

2.2.1 Data preparation for spatial scale estimation172

To estimate the spatial scale of EPEs, the daily precipitation data were first con-173

verted into a binary EPE dataset. At each station, observations were assigned a value174

of 1 if their daily precipitation is greater than or equal to the seasonal P90 threshold,175

and 0 otherwise. We did not retain precipitation amounts because the magnitude of ex-176

tremes is relative to geographical context and can vary with measurement instrumen-177

tation, especially across a continent as large as Australia. By using binary data, the im-178

pacts of extreme precipitation events can be compared across regions, whereas raw pre-179

cipitation amounts vary greatly across Australia (see Figure 2).180

To identify stations impacted by the same EPE, we define a 500-km radius neigh-181

bourhood around each station (see black and red dots in Figure 3a, c). On days when182
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Figure 2. Seasonal 90th percentile (P90) daily precipitation accumulation for DJF (top left),

MAM (top right), JJA (bottom left), and SON (bottom right)
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Table 1. Acronyms for the NRM sub-clusters shown in Figure 1. Note the Rangeland has been

split into Rangeland West and Rangeland East due to the natural separation of station locations.

Acronym NRM Sub-Clusters

MNW Monsoonal North West

MNE Monsoonal North East

WT Wet Tropics

RW Rangeland West

RE Rangeland East

SFW Southern Flatlands West

SFE Southern Flatlands East

ECN East Coast North

CS Central Slopes

ECS East Coast South

VICW Victoria West

MB Murray Basin

VICE Victoria East

TASW Tasmania West

TASE Tasmania East

the neighbourhood central station exceeds its seasonal P90 threshold, all stations within183

this neighbourhood are paired and classified into the following categories:184

1. 1-1 pair: two stations both detected an EPE on the same day.185

2. 1-0 pair: only one of the two stations detected an EPE on that particular day.186

3. 0-0 pair: the EPE was observed at neither station on that day.187

The 0-0 pairs are discarded as they are not needed in the subsequent analysis, similar188

to Touma et al. (2018). Figures 3a and 3c demonstrate these pair categories: any two189

red stations are classified as a 1-1 pair; a red and a black station as a 1-0 pair; and two190

black stations as a Pair 0–0.191

This approach of pair selection does not account for EPEs that occur beyond the192

neighbourhood boundary. To address this, we allowed for relaxed neighbourhood pair-193

ing, meaning that one of the stations in a pair could lie outside the 500-km neighbour-194

hood. This is illustrated in Figure 3a and 3c (pink and grey dots). Only pairs where at195

least one station lies within the 500-km neighbourhood (i.e., red–pink, red–gray, and black–pink196

pairs) were retained. Pairs entirely outside the 500-km radius were excluded.197

The choice of neighbourhood size is a key consideration, as previous studies have198

shown it can influence the absolute magnitude of estimated spatial scales, although the199

relative regional and seasonal variations remain largely unchanged (Touma et al., 2018).200

On this basis, we conservatively adopt a 500-km radius, consistent with physical reason-201

ing that this scale is sufficient to capture the spatial extent of many mesoscale systems202

(e.g., Khouakhi et al., 2017; Tan et al., 2021). The number of stations used for EPE spa-203
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tial scale analysis within the 500-km neighbourhoods for each station and NRM region204

is summarised in Figure 1b-c.205

2.2.2 Semivariogram estimation using the binary EPE dataset206

To quantify the EPE spatial scales, a semivariogram is used to characterise the de-207

gree of spatial autocorrelation of a given spatial field Z(x) at location x by describing208

how the similarity between observations decreases as the distance h between them in-209

creases. It is defined as the expected squared difference between values separated by dis-210

tance h:211

γ(h) =
1

2
E [Z(x)− Z(x+ h)]

2
, (1)212

where h is the distance between the two locations (Webster & Oliver, 2007). This213

form of the semivariogram assumes isotropy, which means that the spatial relationships214

depend only on the distance between locations, not on their spatial orientation relative215

to one another.216

As the EPE dataset is now binary, Z(x) only takes values of 0 or 1. This means217

the pointwise estimate of γ(h) for any two stations xi and xj is 0 for a 1-1 pair, and 0.5218

for a 1-0 pair. To empirically estimate γ(h), we require an approach suited to binary data,219

irregularly spaced stations, and changing network coverage.220

To address this, the observations can be pooled to estimate the semivariogram em-221

pirically. We group station pairs (1–1 and 1–0) based on their distance apart, using 25-222

km bins within a 500-km neighbourhood, following Touma et al. (2018) and Tan et al.223

(2021). The grouping intervals are therefore (0,25] km, (25, 50] km, . . . (475, 500] km.224

For any interval (h− δ, h], where δ = 25 km is the bin size, this can be written as:225

Nh = {(xi, xj) : h− δ < d(xi, xj) ≤ h; i, j = 1, . . . S}, (2)226

where S is the total number of stations in the relaxed neighbourhood, d(xi, xj) is227

the Euclidean distance between stations xi and xj . This produces a series of sets con-228

taining grouped station pairs N25, N50, . . . N500.229

By changing the expectation in Equation 1 to a sum, the empirical estimate of the230

semivariogram for a given binned interval is231

γ̂

(
h− δ

2

)
=

1

2|Nh|
∑

(xi,xj)∈Nh

[Z(xi)− Z(xj)]
2
, (3)232

where h− δ
2 is used because estimates are taken at the bin centre. The notation233

|Nh| means the total number of distinct station pairs in the set Nh. As the pairs fall into234

one of two distinct categories (1-0 and 1-1 pairs), this can also be written as |Nh| = |Nh,(1,0)|+235

|Nh,(1,1)|.236

As Z(x) is a binary field, the above equation further simplifies to237

γ̂

(
h− δ

2

)
=

1

2

( |Nh,(1,0)|
|Nh|

)
=

1

2

( |Nh,(1,0)|
|Nh,(1,0)|+ |Nh,(1,1)|

)
. (4)238

Intuitively, this estimator represents the strength of the spatial relationship, which239

can be estimated as the ratio of 1-0 pairs to the total number of pairs in that binned in-240

terval. Visually, this is shown in Figure 3b, d, e, where the empirical estimates (black241
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Figure 3. Illustration of the relaxed moving neighbourhood method for a station in New

South Wales, Australia. Two examples are given for the EPE on 24th November 2021 (a-b), and

a larger EPE on 29th April 2020 (c-d). Panels (a) and (c) are maps illustrating stations within

the 500-km radius neighbourhood in red (P90 detected) and black (P90 not detected). Stations

outside the neighbourhood are shown in pink (P90 detected and outside) and grey (P90 not de-

tected and outside). Panels (b) and (d) show the semivariogram estimation for the two days. The

blue bars represent the number of 1-1 pairs, and the gray bars are for 1-0 pairs. The red dashed

line shows the derived length scale. Panel (e) illustrates the climatological length scale for the

station in SON. The blue and gray bars are the sum of all 1-1 pairs and 1-0 pairs over the 67

extreme days in SON for that station, respectively.
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dots) correspond to half the ratio of the gray bar height to the combined height of the242

gray and blue bars.243

Figures 3a-d illustrate semivariogram estimation for two individual days. To en-244

sure more robust estimation, here we focus on estimation of a climatological semivar-245

iogram γ̂season(h) based on all EPEs within a given season. To obtain climatological length246

scales, we grouped all 1-1 pairs and 1-0 pairs within each station’s 500-km neighbour-247

hood based on the bin interval (h−δ, h], pooling across all EPE days (d) within a given248

season from 1940 to 2024:249

γ̂season

(
h− δ

2

)
=

1

2

∑
d∈D

∣∣∣N (d)
h,(1,0)

∣∣∣∣∣∣N (d)
h

∣∣∣
 =

1

2

∑
d∈D

∣∣∣N (d)
h,(1,0)

∣∣∣∣∣∣N (d)
h,(1,0)|+ |N (d)

h,(1,1)

∣∣∣
 , (5)250

where D is the set of EPE days for the season of interest. This process is illustrated251

in Figure 3e. The same procedure was applied to estimate spatial scales of EPEs asso-252

ciated with ENSO in each season (see Section 2.3).253

For this estimator to be robust, we required each station to have at least 20 neigh-254

bours within its 500-km neighbourhood, excluding 14 stations that did not meet this cri-255

terion. We further retained only EPE days where at least 10% of neighbourhood stations256

exceeded P90, thereby filtering out events detected by only one or two stations. A sen-257

sitivity test without this filter yielded similar overall results, but isolated-station events258

lacked sufficient spatial coherence for reliable scale estimation.259

The semivariogram in this form (Equations 4 and 5) does not reveal the spatial scale260

of EPEs. To estimate the spatial scale of EPEs, we next fit a parametric model to the261

semivariogram estimate γ̂(h) as described below.262

2.2.3 Estimating semivariogram parameters263

Various theoretical semivariogram models can be used to model spatial autocor-264

relation (Webster & Oliver, 2007; Cressie, 2015). For example, Touma et al. (2018) and265

Tan et al. (2021) used the exponential model, while Touma et al. (2019) adopted the spher-266

ical model. Using synthetic data, we compared exponential and spherical fits, finding heuris-267

tically that the spherical model was less sensitive to changes in station coverage and ex-268

hibited less bias than the exponential model. Based on this, we adopt the spherical model269

for semivariogram fitting and leave it to future work to investigate parametric model se-270

lection further. The spherical semivariogram is given by271

γ(h) =


0, h = 0

c+ b 3h
2α − 1

2 (
h
α )

3, 0 < h ≤ α

c+ b, h ≥ α

(6)272

where c, b, and α are the nugget, the partial sill, and the length scale of the semi-273

variogram, respectively (Cressie, 2015). The nugget c accounts for variability at very short274

distances. The nugget and partial sill determine the sill (b+c), which is the γ(h) value275

approached by the spherical semivariogram at large separation distances. The length scale276

α is the separation distance at which the semivariogram levels off, indicating the distance277

beyond which spatial proximity no longer governs the semivariogram (red dashed lines278

in Figure 3b, d, e). Following Touma et al. (2018), we use the length scale α of γ̂season279

to represent the climatological spatial scale of EPEs. The fitted semivariogram was cal-280

culated using the GSTools package with the Python programming language (Müller et281

al., 2022).282
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2.3 ENSO events classification and bootstrapping283

To identify ENSO EPEs, we use the monthly Southern Oscillation Index (SOI). The284

SOI is based on the standardized anomaly of the mean sea-level pressure differences be-285

tween Tahiti and Darwin, with records available from January 1876 (Trenberth, 1984).286

Sustained negative SOI values below -7 are typically associated with El Niño conditions,287

while sustained positive values above 7 indicate La Niña conditions.288

To ensure adequate and comparable samples for semivariogram estimation, stations289

must record at least 20 EPEs in both ENSO phases within a season. Thus, only stations290

with ≥ 20 El Niño and ≥ 20 La Niña events per season are retained (e.g., a station with291

5 El Niño and 30 La Niña events in SON is excluded). To have sufficient stations meet292

this criterion, the SOI threshold was relaxed from ±7 to ±5. The EPEs are then clas-293

sified by their monthly SOI with SOI > 5 as La Niña and SOI < −5 as El Niño. Af-294

ter relaxing the SOI thresholds, 4041 out of the total 9861 stations meet the minimum295

event number requirement in at least one season. The semivariogram estimation was done296

using all 9861 available neighbour stations with 500-km neighbourhoods centred at these297

4041 stations.298

To quantify uncertainty in the estimated length scales, we applied bootstrapping299

separately for each ENSO phase and season at each station. While various bootstrap-300

ping methods are available (see e.g. Paciorek et al., 2018, and citations therein), we used301

the basic bootstrap for simplicity. To equalize sample sizes between phases, the num-302

ber of events used in bootstrapping was set to the smaller of the two phases within a given303

season. For example, if a station had 60 La Niña and 90 El Niño events in DJF, we first304

ranked the 90 El Niño events by the absolute SOI and then subsampled 60 events evenly305

across the ranked distribution, thereby preserving coverage across the SOI range. For306

both phases, the 60 events were then resampled with replacement for bootstrapping. The307

with-replacement sampling was repeated 1000 times. For each bootstrap sample, the semi-308

variogram approach was applied to estimate the climatological length scale, producing309

distributions of length scales for El Niño and La Niña events, as well as their differences310

(La Niña minus El Niño).311

To compare EPE length scales between ENSO phases, we used the differences in312

the median values of their respective bootstrap samples. Statistical significance was as-313

sessed at the 90% confidence level based on bootstrap distributions. We consider differ-314

ences in the median statistically significant if at least 90% of the bootstrap samples are315

on the same side of zero as the differences in the median. More specifically, significance316

is assigned when:317

• the differences in the median and the 10th percentile of the 1000 sample differ-318

ences are both positive or,319

• the differences in the median and the 90th percentile of the 1000 sample differ-320

ences are both negative.321

2.4 Trend analysis using long-term rain gauge records322

The long time coverage of the data used in this study naturally raises the question323

of how the length scales of EPEs change over time. Unfortunately, the number of active324

BoM stations varies over time, with many stations being decommissioned and new sta-325

tions coming online (see Figure S1). Only 1705 stations in Australia have been contin-326

uously operating from 1940 to 2024, and only a few of these stations have enough neigh-327

bour stations for semivariogram analysis. Therefore, for the trend analysis, we only present328

the climatological length scales of EPEs for the 500-km neighbourhood centred at the329

2070 stations that have been operating from 1st January 1960 to 31st December 2023,330

which we refer to as “long-term stations” (locations see Figure S2). This is to balance331

the need between the spatial coverage and the length of the record. The climatological332
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Figure 4. Seasonality of the climatological length scale of EPEs based on 40-km gridded

station averages.

length scale results for the long-term stations generally agree with those for the 9861 sta-333

tions presented below (see Figure S3).334

For the trend analysis, we first divided the period between 1960 and 2023 into two335

halves: 1960-1991 and 1992-2023. Then, we estimated the climatological length scales336

separately for the two periods for each long-term station. Finally, we compare the cli-337

matological length scales for each season between the two periods to assess how the EPE338

length scales change over time.339

3 Results340

3.1 Seasonal length scale of EPEs341

Figure 4 shows the seasonal climatology of EPE length scales, and Figure 5 sum-342

marizes these results based on NRM regions. We will describe the seasonal and regional343

variation in length scale in more detail below; here we note that these seasonal and re-344
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Figure 5. Box plots showing the seasonal length scales of EPEs for stations grouped by

NRM regions. Boxes span the 25th–75th percentiles, with the centre line marking the median,

and whiskers extending from the 5th to the 95th percentiles. Seasons are shown on the x-axis

and estimated length scales on the y-axis, with subplots corresponding to NRM regions. The

y-axis is consistent across subplots to enable direct comparison, except for the top row, which

shows results for NRM regions in northern Australia. In these regions, higher uncertainty and

lower confidence in some estimates arise from low event numbers (< 10; see Figure 6) and sparse

station coverage.
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gional patterns are coherent, and they do not simply mirror those of P90 thresholds (Fig-345

ure 2) or mean precipitation (Figure S4).346

For reference, we present the number of EPEs used in the semivariogram estima-347

tion at each station in each season in Figure 6. The seasonal and regional patterns of348

the number of EPEs align with those of P90 thresholds (Figure 2), with a higher num-349

ber of EPEs generally corresponding to higher P90 thresholds. For example, due to the350

monsoon influence, both Monsoon North West and Monsoon North East exhibit a low351

number of EPEs during JJA and SON, which largely correspond to the dry season, where352

the P90 thresholds are also lower. Note that fewer than 10 EPEs were recorded at sta-353

tions in Monsoon North West during JJA (brown grid boxes in Figure 6). Our sensitiv-354

ity test (see Figure S5) showed that a low sample size, especially lower than 20, may lead355

to inaccurate estimates of the climatological length scale shown in Figure 5. We present356

the results for low EPE numbers for completeness, but any interpretation should account357

for the potential inaccuracies associated with the small sample size.358

We assessed the statistical significance of seasonal variations within each NRM re-359

gion using the paired Wilcoxon signed-rank test (Wilcoxon, 1945), and seasonal differ-360

ences between NRM regions using the Mann-Whitney U test (Mann & Whitney, 1947),361

following approaches similar to Touma et al. (2018) and Tan et al. (2021). These tests362

were used to evaluate whether median EPE length scales differ significantly across sea-363

sons or between regions. The computation of the paired Wilcoxon signed-rank test, Mann-364

Whitney U test, and p values is conducted using the SciPy package (Virtanen et al., 2020).365

Results of statistical significance tests for the intraseasonal and intraregional differences366

are shown in Figure 7 and Figure 8, respectively.367

3.1.1 Intraseasonal comparison368

Seasonal differences in EPE length scales across Australia’s 15 NRM regions re-369

flect the continent’s climatic diversity (Figure 7). Most regions exhibit a seasonal cycle370

with seasonal changes of less than 100 km in spatial extent.371

The monsoon-impacted tropical regions (Monsoon North West, Monsoon North East,372

Wet Tropics) and adjacent East Coast North present a notable paradox: while the num-373

ber of EPEs is lowest during the dry season (JJA and SON; Figure 6), the median length374

scales are at their largest (Figure 5a-c). This may be due to a combination of the low375

number of events and the lower P90 thresholds at tropical stations during JJA, the mon-376

soon inactive phase (Figure 2). Consequently, a storm with a given physical footprint377

and intensity will exceed the P90 threshold at more stations in the dry season, making378

its estimated length scale appear larger than an equivalent storm in the wet season. Note379

that these dry season events are classified as extremes only when seasonal P90 thresh-380

olds are applied.381

In the eastern regions, Rangeland East and East Coast North exhibit the largest382

median climatological length scale in JJA (Figure 5e, f), while East Coast South and Cen-383

tral Slope show the largest median climatological length scale in DJF (Figure 5f, i). The384

southern regions (Southern Flatlands East, Tasmania West, Tasmania East, Murray Basin,385

Victoria West, and Victoria East) generally show a greater number of EPEs in JJA (Fig-386

ure 6) and a larger climatological length scale in DJF and SON (Figure 5h-o).387

In the western regions (Southern Flatlands West and Rangeland West), both EPE388

frequency and length scale peak during JJA (Figure 5d, g; Figure 6), coinciding with en-389

hanced frontal precipitation in this season (Prescott et al., 1952; Pook et al., 2012; Raut390

et al., 2014). In contrast, we find no evidence of similar frontal contributions to EPEs391

in other southern regions, based on the analysis in Pepler et al. (2020), indicating that392

the drivers of EPE spatial scales vary across regions.393
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Figure 6. Maps similar to Figure 4, but showing the number of EPEs included at each station

in the climatological length scale analysis from 1940 to 2024.
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Figure 7. Heatmap showing magnitude and significance of the intraseasonal differences in

the median seasonal length scales of the EPEs using the paired Wilcoxon signed-rank test. The

shading of each box represents the differences in the median length scale of the column season

minus that of the row season. The marker inside each box illustrates the significance level of the

paired Wilcoxon signed-rank test as shown in the legend.

3.1.2 Intraregional comparison394

Most regional differences in median length scales are highly significant (p < 0.01;395

Figure 8), confirming that these are robust patterns rather than random chance. West-396

ern regions (Southern Flatlands West and Rangeland West) exhibit consistently larger397

length scales than other regions in all seasons, with the contrast most pronounced in JJA,398

when variability across the continent is greatest and strongly significant (p < 0.01; Fig-399

ure 8).400

In contrast, Tasmania (TASW and TASE) shows the smallest climatological length401

scales of any region (Figure 4). A sensitivity test using neighbourhood radii of 300 km402

and 700 km (not shown) confirmed that these short length scales are not an artifact of403

the 500-km radius; they remained consistently smaller than those on the Australian main-404

land across all test cases. Tropical regions (Monsoon North West, Monsoon North East,405

and Wet Tropics) also display small EPE length scales relative to most other areas (Fig-406

ure 8). The reduced length scales observed in both Tasmania and the tropical regions407

are consistent with the findings of the global study by Tan et al. (2021).408

3.2 Seasonal length scales of ENSO events409

Figures 9, 10, and 11 show the seasonal length scales of EPEs for El Niño and La410

Niña conditions, along with their differences at each station (La Niña length scale mi-411

nus El Niño length scale). The displayed results show the median length scales of 1000412

bootstrap samples for both ENSO phases. At several stations, the differences in EPE413

length scales between ENSO phases are statistically significant at the 90% confidence414

level, indicating that these differences are unlikely to be due to random variability. Since415
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Figure 8. Similar to Figure 7, but for the magnitude and significance of the intraregional

differences in the median length scales for each season using the Mann-Whitney U test.
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Figure 9. Maps illustrating the climatological length scale for (a-d) El Niño and (e-h) La

Niña in eastern and southeastern Australia. The displayed values are median length scales of

1000 bootstrap iterations for each station. Panel (i-l) shows the difference in median length scale

between La Niña and El Niño. The locations of Australian states/territories are marked for ge-

ographic reference (SA = Southern Australia, QLD = Queensland, NSW = New South Wales,

VIC = Victoria, and TAS = Tasmania). For each state or territory within the displayed area, the

difference panels (i-l) also indicate the number of stations with larger EPE length scales during

La Niña (blue) and El Niño (red). Values in parentheses denote the number of stations with 90%

confidence level in the difference in length scales between ENSO phases. Stippling with black

dots indicates grid boxes that contain at least one station exceeding the 90% confidence level.

–18–



manuscript submitted to International Journal of Climatology

Figure 10. Similar to Figure 9, but for southwestern Australia. Results for DJF are not dis-

played in this region due to insufficient ENSO events at stations in this region. The displayed

region is located in Western Australia (WA).

Figure 11. Similar to Figure 9, but for northern Australia. Results for JJA and SON are not

shown due to insufficient ENSO events at stations within the displayed region. State/territory

boundaries are marked for WA, Northern Territory (NT), and QLD.
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several NRM regions have fewer than 10 stations in certain seasons, we present the anal-416

ysis based on Australian states and territories. Here, we primarily focus on states and417

territories with sufficient station coverage. For simplicity in geographical reference, the418

Australian Capital Territory (ACT) is included as part of New South Wales (NSW). Note419

that Queensland (QLD) in JJA (Figure 9 c, g, k), north Western Australia (WA) in DJF420

and MAM (Figure 11), and Northern Territory (NT) in MAM (Figure 11 b, d, f) include421

fewer than 10 stations. Caution should be exercised when interpreting these results.422

While La Niña episodes are associated with wetter conditions than El Niño in east-423

ern Australia with respect to both mean and extreme precipitation (e.g. Nicholls et al.,424

1997; Risbey et al., 2009; King et al., 2014), the differences in EPE length scales between425

the two ENSO phases exhibit strong seasonality and vary across regions. In eastern and426

southeastern Australia, the east coast of Queensland and New South Wales exhibits larger427

EPE length scales during La Niña in DJF (Figure 9i), with the opposite in MAM (Fig-428

ure 9j). Moving to JJA and SON, stations in New South Wales still show a larger EPE429

length scale associated with La Niña (Figure 9k-l). Southeast Queensland shows smaller430

EPE length scales during La Niña compared to El Niño in SON (Figure 9l). The sea-431

sonality in Tasmania (TAS) is similar to that in New South Wales, with La Niña linked432

to a smaller EPE length scale in MAM only. Stations in Victoria (VIC) do not show a433

clear ENSO-related signal in DJF, but La Niña EPE length scales are generally larger434

than their El Niño counterparts in other seasons. In Southern Australia (SA), most sta-435

tions show a larger climatological length scale during El Niño across all seasons, except436

for SON (Figure 9i-l). In contrast, the opposite pattern is observed in southwestern Aus-437

tralia (Figure 10), where the majority of stations display larger EPE length scales dur-438

ing La Niña compared to El Niño in MAM, JJA, and SON. In northern Australia, only439

a small number of stations have sufficient samples, but most stations show smaller EPE440

length scales during La Niña compared to El Niño in DJF (Figure 11e). This pattern441

is also observed along the northeast coast of Queensland in MAM (Figure 11f).442

3.3 Long-term trends in the seasonal length scales443

Figure 12 compares the differences of the median values for each NRM region be-444

tween 1960-1991 and 1992-2023. More details of the seasonal length scales in each NRM445

region are shown in the boxplots and maps in Figures S6-S7, respectively. Here, we fo-446

cus primarily on the long-term changes in the medians of climatological length scale in447

each NRM region. The statistical significance of the differences is evaluated using the448

Mann-Whitney U test.449

Only southwestern Australia (South Flatlands West) and most regions in the east450

and southeast (East Coast South, East Coast North, Central Slope, South Flatlands East,451

Tasmania East, Murray Basin, Victoria West, and Victoria East) have a good spatial452

coverage of stations (Figure S2). Therefore, we mainly focus on these regions for the trends453

in the climatological length scale. As changes in rain gauge network density may affect454

length scale estimates, we present results based solely on the 2,070 long-term stations455

here. We conducted the same analysis that includes all 9861 neighbour stations within456

neighbourhoods centred on the long-term stations. The results from both the long-term457

and 9861 neighbour station sets are largely consistent (not shown).458

The trend analysis of EPE length scales reveals geographically coherent patterns459

across Australia, with most of the observed changes being statistically significant (Fig-460

ure 12). A notable increasing trend is seen across the eastern and southeastern regions461

(Victoria West, Victoria East, East Coast South, and East Coast North) during SON,462

while a decreasing trend is common in MAM. In contrast, the Tasmanian regions (TASW463

and TASE) are the main areas where the changes are not statistically significant, while464

they share a similar trend of decreasing in DJF and JJA, and increasing in SON. Fur-465

–20–



manuscript submitted to International Journal of Climatology

Figure 12. Maps showing magnitude and significance of the differences in the median sea-

sonal length scales of the EPEs for each NRM region using the Mann-Whitney U test for DJF

(top left), MAM (top right), JJA (bottom left), and SON (bottom right). The shading of each

region represents the differences of the median values in 1992-2023 minus those of 1960-1991. Cir-

cle markers at region centroids illustrate the p values of the Mann-Whitney U test. The triangle

marker shows where excluding the Millennium Drought reverses the trend. Each panel includes

an inset map of SFW (bottom left). Results for MNW, MNE, WT, RW, and RE are not shown

due to insufficient stations.
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ther west, Southern Flatlands East shows an increase in all seasons except JJA, while466

Southern Flatlands West exhibits a general decreasing trend except SON.467

Southern and southeastern Australia (all displayed regions in Figure 12 except for468

Southern Flatlands West and East Coast North) experienced a prolonged dry period be-469

fore 2010, commonly known as the “Millennium Drought” (Van Dijk et al., 2013). To470

isolate the influence of this drought on changes in the EPE length scales, we conducted471

an additional analysis using two periods that exclude the drought years: 1960–1973 and472

2010–2023. For most regions, this analysis yields consistent results (see Figure 12). There-473

fore, we only highlight the specific cases where excluding the Millennium Drought pro-474

duced a significant change.475

The influence of the Millennium Drought is evident in some seasons in Southern476

Flatlands West, Murray Basin, Central Slopes, East Coast South, East Coast North, Vic-477

toria West, and Tasmanian East. In the far west (Southern Flatlands West), the trend478

in SON reverses from increasing to decreasing when the drought is excluded. Moving to479

the east, the trend in Victoria West and Murray Basin in MAM flips to increasing, while480

the increasing trend is weak (< 18 km; not shown). For East Coast North, such a re-481

versal to an increasing trend is observed during MAM. In Murray Basin and Central Slope,482

the trends in SON flip from a decreasing to an increasing trend.483

The above patterns in changes to the length scale of EPEs do not typically corre-484

spond to those in mean precipitation (Figure S8) or the P90 thresholds (Figure S9), with485

two notable exceptions. First, the strong reduction in EPE length scales in Southern Flat-486

lands West aligns with a documented drying trend in southwestern Australia (Dey et al.,487

2019). This comparison between extreme events and mean trends is relevant given the488

established strong relationship between them (Nishant & Sherwood, 2021). Second, a489

decreasing trend is shared by both median length scales and mean precipitation during490

MAM across southeastern and eastern Australia (Victoria West and East, Tasmania West491

and East, Murray Basin, Central Slope, and East Coast South and North; Figure S8).492

The implications of these results are explored in the next section.493

4 Discussion494

A more humid large-scale environment is often associated with greater precipita-495

tion amounts and broader rainfall coverage (e.g. environments with higher mid-level rel-496

ative humidity and total precipitable water; Zhou et al., 2013), suggesting that both the497

intensity and spatial scale of extremes may increase under such conditions. However, our498

results suggest a more complex picture with the spatial scales of EPEs. Unlike mean pre-499

cipitation, which generally shows a positive correlation with La Niña conditions across500

Australia (Risbey et al., 2009), the response of EPE length scales does not follow the same501

pattern. In some instances, the patterns align with expectations. For example, the larger502

length scales in southeastern Australia during Spring (SON) under La Niña are consis-503

tent with conditions favourable for rain-producing cyclones (Gillett et al., 2023), which504

produce large-scale EPEs. However, in other cases, the relationship is inverted, such as505

the larger length scales observed during El Niño in South Australia in JJA (Figure 9k).506

To ensure the robustness of our analysis, we verified that the selected ENSO events are507

not dominated by any single year (i.e., a particularly wet El Niño or a particularly dry508

La Niña) and that, consistent with established patterns, most stations coincide with higher509

seasonal total and mean precipitation in each La Niña year. Understanding the mech-510

anisms that drive contrasting responses of EPE intensity and EPE length scale to ENSO511

variations is an important avenue for future research.512

The lack of correspondence between length scale patterns and mean precipitation513

is echoed in the trend analysis. Several eastern and southeastern regions (Victoria and514

East Coast) show a reduction in MAM and an increase in SON. Since mean precipita-515
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tion shows no significant change from MAM to SON (Figure S8), the difference is likely516

driven by the spatial characteristics of the underlying weather systems rather than to-517

tal rainfall.518

We propose two possible explanations for the above finding. The increasing length519

scales in SON could be due to a seasonal shift in large-scale circulation, causing the syn-520

optic systems that produce widespread precipitation to occur earlier in the year and/or521

extend further inland. While there are weak trends in mean precipitation in coastal re-522

gions, there are increasing trends in mean precipitation (Figure S8) and the P90 thresh-523

old (Figure S9) observed at inland stations that may be indicative of a broader inland524

shift in precipitation patterns. Confirming whether these contrasting shifts in EPE length525

scale and EPE intensity can be explained by shifts in large-scale circulation will require526

further investigation into the relationship between large-scale atmospheric conditions and527

EPE spatial characteristics.528

A second explanation focuses on the decreasing length scales in MAM. While a warm-529

ing climate generally favours more convective systems that concentrate rainfall over smaller530

areas (e.g., Peleg et al., 2018; Lochbihler et al., 2019), the fact that this trend is most531

evident in MAM suggests a role for seasonally specific storm-type and large-scale circu-532

lation changes. Further work is required to determine if such a shift in rain type is oc-533

curring in the relevant regions, especially using higher spatial resolution observations that534

can resolve storm morphology, such as precipitation estimates from radar or satellites.535

While the semivariogram approach is useful to estimate the climatological length536

scales of EPEs, it assumes isotropy, meaning that the spatial correlation of precipitation537

decays uniformly in all directions. This isotropy assumption has two key limitations. First,538

the method does not account for topographic influences. For example, when a large weather539

system interacts with a mountain range, it can produce intense orographic precipitation540

on the windward side and a pronounced rain shadow on the leeward side. Our analy-541

sis would interpret this as a smaller-scale EPE, failing to distinguish it from a genuinely542

localised convective storm, even though their physical drivers differ fundamentally. Sec-543

ond, an isotropic framework cannot capture anisotropic (e.g., elongated) precipitation544

footprints, such as a long but narrow swath of heavy rain produced by a fast-moving,545

small-scale storm. The isotropic method averages this footprint into a single length scale,546

losing important information about the storm’s shape and motion. Accounting for anisotropy547

is important because the footprint’s geometry reflects an EPE’s physical drivers and af-548

fects its hydrological consequences, such as whether it causes localised or widespread flood-549

ing.550

A further limitation is in the choice of the theoretical semivariogram model, which551

can influence the estimated length scales. In this study, the selection was made heuris-552

tically using synthetic data, while the optimal model for a more accurate estimation of553

length scales may vary across different parts of Australia. Future work should incorpo-554

rate improved model selection procedures alongside methods that capture anisotropic555

precipitation patterns to better represent the spatial characteristics of extreme precip-556

itation events (see, e.g., Johnston et al., 2001; Niemi et al., 2014; Saunders et al., 2021;557

Verbovšek, 2024, and references therein).558

5 Conclusions559

We analysed the long-term climatological length scale of EPEs in Australia using560

the relaxed neighbourhood semivariogram approach. BoM station data from 1940 to 2024561

were used to estimate the seasonal length scale of EPEs. Australia was divided into 15562

regions based on the NRM clusters. The seasonal analysis reveals diverse characteris-563

tics in EPE length scales across Australia, with geographically coherent patterns emerg-564

ing among adjacent regions. The seasonality differs across climate zones. Monsoon-impacted565
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regions exhibit a visible separation between dry and wet seasons in the number of EPEs,566

while other regions display a clear seasonal cycle in climatological length scales. Although567

Tasmania is associated with the smallest length scale, it still shares geographical sim-568

ilarity in the seasonal cycle of length scales with nearby regions. The southern regions569

coincide with the smallest length scale in JJA, while the eastern regions present the largest570

length scale in JJA. The paired Wilcoxon signed-rank test and Mann-Whitney U test571

were carried out to show that the variations in the median climatological length scale572

are statistically significant across seasons and regions.573

Based on the SOI, we present the first climatological analysis of EPE spatial scales574

in Australia during different ENSO phases. Although La Niña conditions are typically575

associated with increased precipitation in eastern Australia, our results show that EPEs576

are not uniformly larger in spatial scale during La Niña compared to El Niño across all577

seasons and all regions. In MAM, the La Niña EPEs mostly display a smaller length scale578

than their El Niño counterparts on the east coast, while this pattern is reversed in other579

seasons.580

With the availability of long-term data, we also examined changes in the climato-581

logical length scale by splitting the analysis into two periods, one from 1960 to 1991 and582

the other from 1992 to 2023. Regardless of the Millennium drought, the analysis reveals583

a reduction in the spatial scale of EPEs in several regions in southeastern and eastern584

Australia in MAM, but an increase in SON. Crucially, these trends, along with the ENSO585

relationships, differ from those observed in mean precipitation and intensity of extreme586

precipitation. This suggests that the mechanisms governing the spatial scale of extremes587

are distinct from those controlling mean precipitation, and that changes in mean pre-588

cipitation do not necessarily imply corresponding changes in the spatial extent of extreme589

events.590

In summary, this study provides a valuable climatological reference for the spatial591

extent of EPEs in Australia. By establishing how EPE spatial scales vary, we lay the foun-592

dation for future work to investigate the underlying physical mechanisms. For example,593

while our results suggest a link between frontal systems and large-scale EPEs in south-594

western Australia in JJA, whether such systems are directly responsible for large-scale595

extremes in this region remains an open question. Similarly, we reveal a complex rela-596

tionship between EPE spatial scales and climate drivers like ENSO. This complexity high-597

lights that improving projections of extreme events in a changing climate requires more598

than just understanding changes in mean rainfall. An important future direction is there-599

fore to go beyond the climatological analysis here and investigate how day-to-day large-600

scale atmospheric conditions modulate the spatial characteristics of EPEs, and the phys-601

ical mechanisms driving this modulation. Such work will strengthen the physical basis602

of our projections for how extreme rainfall will change in a warming climate.603

Data and software availability604

The BoM daily rain gauge data are freely available from BoM’s weather station di-605

rectory (http://www.bom.gov.au/climate/data/stations/; last accessed: 26 August606

2025). The SOI was obtained from the BoM (http://www.bom.gov.au/climate/enso/607

soi/; last accessed: 26 August 2025). The code for semivariogram estimation and the608

gridded maps used to create the figures in this paper are archived by Lin (2025). Fig-609

ures in this paper were produced using the scientific colour maps of Crameri et al. (2020).610
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Figure S1. Number of active BoM stations in Australia over time.
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Figure S2. Similar to Figure 1, but for the long-term stations only.



X - 4 LIN ET AL.: SPATIAL SCALE OF DAILY EXTREME PRECIPITATION IN AUSTRALIA

Figure S3. The percentage difference in the climatological length scales estimated using all

neighbour stations operated for more than 20 years but not throughout 1960-2023, minus those

estimated only using the long-term stations in the 500 km neighbourhood. The red numbers

in each panel indicate the percentage of stations with a larger length scale when all neighbour

stations are used, and the blue numbers in each panel are the percentage of stations with a

smaller length scale when only the long-term stations are used as neighbour stations.
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Figure S4. Similar to Figure 2, but for the mean precipitation of all measurements for BoM

daily stations with more than 20 years of continuous records between 1940 and 2024.
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Figure S5. Sensitivity test of the number of EPEs included in the seasonal length scale

estimate. N is the number of EPEs. The test was done by randomly selecting 30, 25, 20, 15,

and 10 EPEs for each season. The test was repeated 1000 times. The percentage difference is

the subsample results minus the reference length scale, which used all EPE days for each season.

The percentage difference starts to exceed 50% when N≤ 20. The results shown here are for the

same station shown in Figure 3.
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Figure S6. Box plots comparing the spread of the climatological length scales for each NRM

region for the two periods of 1960-1991 (blue boxes in each panel) and 1992-2023 (red boxes in

each panel). Note the difference in the y-axis scale of the panels in the top row. Note that a

low number (< 20) of EPEs were recorded for stations in MNW, MNE, and RW in JJA and/or

SON.



X - 8 LIN ET AL.: SPATIAL SCALE OF DAILY EXTREME PRECIPITATION IN AUSTRALIA

Figure S7. Similar to Figure S4, but for the differences in the climatological length scales

between 1960-1991 and 1992-2023.
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Figure S8. Similar to Figure S7, but for the differences in the daily mean precipitation between

1960-1991 and 1992-2023.
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Figure S9. Similar to Figure S7, but for the differences in the P90 thresholds between

1960-1991 and 1992-2023.
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